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It is shown that the motion of a phase interface with relatively small perturbations 
of the boundary condition is described by the Volterra linear integral equation, 
The solution is investigated using a Laplace transformation. 

Let us consider the one-dimensional, two-phase, Stefan problem 

Ou = a~ - - -  ~ (0 < z < ; (t)), ~ (0) = ~o, 
Ot Oz ~ 

u (z, O) = uo (z), u (0, t) = To, u (~ (t), t) = v (~ (t), t) = T,~, 

Ov ~ Ozv 
at = a2 - a z  ~ -  (; (t) < z < t), 

OV z=;( t )+o 
__• Ou . + •  = - - ~ p d - - ~  

Oz ~=;(t~-o ~ dt  ' 

v (z, O) = vo (z), v (t, t) = Tt  (t), 

( I )  

uo(z) and vo(z) being the initial temperature distributions. If the temperature of the 
phase transition depends on the z coordinate, then T m = Tm(~(t)), In the general case this 

problem is reduced to a complex system of nonlinear integral equations [1-2]. We will con- 
sider the system (i) with the following restrictions; i) at the initial time the boundary is 
at a stationary position; 2) the variation in the temperature v(l, t) represents a small per- 
turbation relative to the steady value, 

v (l, t) =:.: Tz (t) = T~ + e T  (t). ( 2 )  

The initial conditions are assigned as linear functions of z and are consistent with the 
boundary conditions; 

z 
u (z, O) = (Tin - -  To) "~o + To, 

v (z, 0) = ( T t  - -  Tin) - -  
z - -  ~o 

+ Tm, T m =  Tm (~o). 

We introduce the coordinate system connected with the phase interface [i]; 

(3) 

( t )  - z z - -  ~ ( 0  
P -  ~(t)  ' q - - [ - - ~ ( l )  " ( 4 )  

In the (pqt) coordinates the system (i) is written as follows; 

Ou a~ O 2u (l--p) d; Ou 
O--t = ~2 Op~ ~ dt Op ( 0 < p < l ) ,  
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dv a~ O~v ( l - - q )  dg Ov 
0 - 7 - - - ( l - - g )  2 Oq ~ + l - - g  dt Oq ( 0 < q <  1), 

rq OuO, O ~_ ~ Or(O, O _  ~p d~ (5) 
ap t - - ~  aq dt ' 

u (p, O) = Tra (~o) - -  (Tin (~)  = To) P, v (q, O) = Tm (~o) "4- (T,  - -  Tra (~o)) q, 

u (0, t,) = v (0, t) = Tm (; (t)), u (1 ,  t) = To, v (1,  t) T~ (t). 

With allowance for (2), we seek the solution of the problem (5) in the form of an expansion 
with respect to a small parameter; 

~(t) = ~o(1 - -  e~t (t)), (6)  

u =  u o (p) "-l- cut Co, l ) ,  o = v o (q) -{- evt (q, t) .  

In addition, it is also necessary to expand the phase curve T (g) with respect to r 
m 

Tm (~ (t)) = Trn (~o) -- ~T,n,I x (t). (7)  

Substituting the expansions of the functions ~(t), u(p, t), and v(q, t) into the system (5), 
and using the expansions (2) and (7) of the boundary conditions, we determine the zeroth 
approximations ~o, uo(p), and vo(q) with respect to ~ and obtain a system for finding the 
first approximation, uz(p, t), vx(q, t), and B(t), 

The zeroth approximations are 

u, (p) = Tm (~o) - -  (Tra (~o) - -  To)p,  vo (q) = T m  (~o) q- (Ti - -  Tm (~o)) q. (8)  

The coordinate ~o corresponding to the steady-state solution is determined from the trans- 
cendental equation 

x_L (Tin (;o) - -  To) = - - -~- -  (T, - -  Tm (~)).  (9)  
~o t- 

In the first approximation with respect to g we obtain the system 

Out 1 O~u, 

Ot % Op ~ 

Ov ~ 1 O~v 

,tB ( o < p <  1), - -  (Tin (~)  - -  To) (1 - -  p) ~ -  

;~ (I--@ d~ ( o < q < 1 ) ,  (T, - -  Tm (;o)) l --;o 
Ot T~ Oq ~ 

- -  •  (Tin (go) - -  To) ~ (t) + • Oui (0, l) + • 0vt (0, 0 = ~,P[o dl~ , 
~o (l - -  ~o) ~o Op l - - ;0  Oq dt 

(10) 

u~ (1, t) = u~ Co, o) = v~ (q, o) = o ,  u~ (o,  t) = v~ (o,  0 = -- Tmi[ ~ (t), 
2 9 

= = - -  ~o)'la2. vt (1, t ) =  T (t), To ~o/aL Tt (l " ~ 

We seek the solutions of the first two equations of the system (i0) in the form ut = 
uxz + uxa and vt = vxx + vt2 + vxs, where uxx and vtx are the solutions of the inhomogeneous 
equations of heat conduction for u~ and vl with zero initial and boundary data, while uzaa 
vx2, and vx3 are the solutions of homogeneous equations with the corresponding inhomogeneous 
boundary conditions. These solutions are written using the Green's function for the first 
boundary problem in the segment (0; i)[3-4]: 

i +~ [ ~2n2 (t -- T) ] uti (p, t) = -- 2 (Tra -- To) dl~ E l_l_ exp sin ~npdT. 
0 KT n = l  ~n,  T o 

(ii) 

Calculating the derivative 3uzz/~p by termwise differentiation of the integrand and using 
the definition of the Jacobi elliptic there function Os [5], 
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-F= 
On (p, t) = 1 + 2 ~ exp [--n2nZt] cos 2nnp, 

r t= l  
(12) 

we obtain 

au. @, 0 
ap 

t 

d~ [O s 
0 

P �9 -- 1 dT. 
2'  (13) 

We obtain the expression 3v, x/Bq similarly: 

t 

Ovti  (q, l) _ (T,--Tm) ~o aq l-----~. ~ d~  [Oa ( 
0 

q " -- 1 d~. 
2 '  

(z4) 

The solution of the homogeneous equation fol ux(p, t) with the boundary conditions 
u1(O, t) = --Tm~(t) and u1(l, t) = 0 and a zero initial condition has the form 

t § 

ut~ (p, t) = 2nTmt tx (x) exp 
To To J 

0 n=l 
(15) 

Integrating the series in (15) by parts and calculating the derivative with respect to p, 
we obtain 

t 

aut"(P'ap t )--Tmt~ dTd~(P'03 2 ' t--'•)TO 
0 

d~. (16) 

The expression @v,2(q, t)/Sq looks completely similar: 

t 

0 

(17)~ 

Finally, 

t +| 

0= <..> 
0 n~O 

Integrating the series in (18) by parts and calculating the derivative with respect to q, 
we obtain 

0 

(19) 

Substituting the values of the derivatives 3uz(O, t)/3p and ~vz(0, t)/~q into the third 
equation of the system (i0) and using Eq. (9), we obtain an integral equation for the ve- 
locity of motion dB/dt of the interface: 

t 

dix dix Tt 03 0; + 
/ T o  

0 

t 

aT 03{ I .  t - -T  

0 

(20) 
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Here 

7" '  = - -~t  " "~ ' ,=T in - -To- -T in , ;  7"s 1 ~  T I n - - T o  - ' ~  " ' = V Cix~ --~l T m i  ' 

/~C~ . 
a = - i f ,  C7 ' 

Cx and Cz are the heat capacities of phases i and 2, respectively. We will investigate the 
Volterra integral equation (20) with the help of a Laplace transformation, Changing to the 
transforms, and considering that [6] 

O8 (p, t) " ch (2p -- 1) ]/F (21) 
V ~ s h  V ~  ' 

we obtain 

AX (s) 1 
M (s) ...... sh ]/s. ,  7", V s-% + T~ cth V~-o + "~'8 cth'V-~7 ' (22) 

where M(s) and X(S) are the Laplace transforms of the functions ~(t) and T(t), Let us in- 
vestigate the principal asymptotic forms of the solution, At "small" times (t << min (To, 
Tx)) the behavior of ~(t) is determined by the asymptotic form M(s) at large s [6], At 
large s 

2A exp (-- ]/'s-~)X (s) 
M(s) ~ ,  

'7't V~o + Tz +7's- " (23) 

By inverting (23) we obtain an expression describing the motion of the boundary at times 
t << rain (Tot TI): 

t 

2A ,I T (t) F' (t - -  ~) d~, (24) 

0 

where 

-- t fT- 
F ( t ) = e r f c ( 1 / - - ~ - ) - - e x p ( c z z T - -  ~ + = / - ~ - ) e r f c ( - ~  V # - - ~ - + = ~ /  '-%0 )" 

The quantity a equals (Ta + T,)/TI, and for the case of Tt << To/a 2 we can obtain a compar- 
atively simple quadrature for the coordinate of the boundary, using an asymptotic expansion 
of the function erfc (z) at large z: 

t exp[ 4 (j--~_ z)] 2A ( .  

�9 ~ VYT",n j 7" (~) 
o V t - ~  

d~:. (25) 

The motion of the boundary at large times (t >> max (to, Tz)) is determined by the residues 
of the function M(s)e ts at the poles closest to the origin of coordinates. Let us consider 
the case when X(S) = T/s is the transform of the step function T(t) = TH(t), A residue of 
zero gives a constant 

AT 
.'VZo = ~ (*d~o) ll2 + ~ 

By analyzing the denominator of Eq. (22) we can ascertain that the next poles lie on the 
negative s semiaxis and their location is found from the solution of the transcendental 
equation 

T3 ctg b + T~ ctg b ~ + Tib xi = 0, b = - -  i ]'/'~l-I �9 (26)  
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We represent ~(t) in the series form 

sin b* l / /  " 7"t -t- 7"~/sin z b'~ x.._~_o + rTs/sinZb* ~ 

the location of the first N poles : (N ~, 1 In the case when T I << To 

mined by the equation \ 10~ 

, 2  �9 
I~ (t) = Mo + ~ M,~ exp (-- b] t/'q), (27) 

2A 1 
M. = (28) 

is deter- 

At times t ~ To we can retain only the first term of the series (27). Then we obtain the 
following equation describing the emergence of the phase boundary at the new steady position; 

2A~ZT / - -  
~ ~) = M o  - - ~' T a (1 + Ts/T~) ~ o  exp [-- a~/%]. (29) 

Knowing the law of motion of the boundary, we can determine the temperature distribu- 
tions in each of the phases. We apply a Laplace transformation to Eqs, (13) and (16); 

OU(p, s) 
= ( T i n  - -  T o )  M ( s )  - -  (Tin - -  To - -  Tin,) M (s) V--~o ch (1 - -  p) V"-~o 

Op sh 1/~-oo 
(30) 

Integrating over p, at large s we obtain 

U ~ ,  s) ----- (Tin - -  To) M (s) p + (Tin - -  To - -  Tmi) M (s) exp [--  p ] / s % ] .  

From this we get the temperature distribution in the layer 0 < z < ~(t) at small t; 

(31) 

t 

ttl(p' t)"~(Tm--T~176 2V-~-PV"-~~ I' ( l - -T)  a/2 ~(~) exp[ 4(t--g)P2T~ ]dx. 
o 

(32) 

Similarly, applying a Laplace transformation to Eqs. 
over q, at large s we obtain 

V (q, s)----- ~--t (Tin--  To)M(s)q + ( • (Tin--  To)--  Troll M (s)exp ( - - q ] f - ~ 0 - -  x (s)exp [ - - ( 1 - - q )  ] / ~ / ] .  
/ 

From this we find the temperature distribution in the layer ~(t) < z < I at small t; 

ol (q, t) "~-,,~t• (Tm-- To)qtt(O-- ( • xt (Tm-- To) -- Tml ) X 

(14), (17), and (19) and integrating 

t t 

• 2 ~ - ~ -  (t - -  x)3/2 4 ( t - -  T) d~ V" ~-~-i - exp dT. 2 U ~ -  (t-- ~)3/2 4 (t-- ~) 
0 0 

(33) 

(34) 

In conclusion, we note that in the general case the numerical solutions of the integral equa- 
tion (20) can easily be obtained by the method of successive approximations, 

NOTATION 

u(z, t) and v(z, t), temperature distributions in regions of phases I and 2, respective- 
ly; ~(t), coordinate of movingphase boundary; ~, ~i~ and Ci, thermal diffusivity, thermal 

conductivity, and heat capacity of i-th phase (i = i, 2); %, latent heat of transition; ~, 
~21~2 small parameter; To = ~o~ i and TI = (~ -- ~o)a/a~, characteristic times of heating; s, com- 

plex variable in Laplace transformation. 
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