THE METHOD OF A SMALL PARAMETER IN THE CLASSICAL
STEFAN PROBLEM
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It is shown that the motion of a phase interface with relatively small perturbations
of the boundary condition is described by the Volterra linear integral equation,
The solution is investigated using a Laplace transformation.

Let us consider the one-~dimensional, two-phase, Stefan problem
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Uo(z) and vo(z) being the initial temperature distributions., If the temperature of the
phase transition depends on the z coordinate, then Tm = Tm(C(t)). In the general case this

problem is reduced to a complex system of nonlinear integral equations [1-2], We will con-
sider the system (1) with the following restrictions: 1) at the initial time the boundary is
at a stationary position; 2) the variation in the temperature v(Z, t) represents a small per-
turbation relative to the steady value,
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The initial conditions are assigned as linear functions of z and are consistent with the
boundary conditions:
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We introduce the coordinate system connected with the phase interface [1]:
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In the (pqt) coordinates the system (1) is written as follows:
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With allowance for (2), we seek the solution of the problem (5) in the form of an expansion
with respect to a small parameter:
EO =050 —epn@),
u= ty (p) + ety (py 1), © =4 () + 201 (g, 1).

In addition, it is also necessary to expand the phase curve Tm(c) with réspect to €3
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Substituting the expansions of the functions z(t), u(p, t), and v(q, t) into the system (5),
and using the expansions (2) and (7) of the boundary conditions, we determine the zeroth
approximations o, ue(p), and vo(q) with respect to ¢ and obtain a system for finding the
first approximation, u,(p, t), vi(q, t), and u(t).
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The zeroth approximations are
Uy (0) = T (o) — T () — To) P> Vo (@) = T (Zo) + (Ti — T (%)) 4. (8)

The coordinate [o corresponding to the steady-state solution is determined from the trans-
cendental equation
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In the first approximation with respect to € we obtain the system
ouy _ 1 & p T (1 — 0<p<l
py o (Tm () —To) ( p) B o<p<y),
g _ 1 0 o r 7 1—g % 0<g<1 10
fol e = il @"»t—co 9 5 0<g<), o
— %3] (T (§0) — T) uy 0wy (0, ¥) %y 0vg (0, 8) dp.
+ = Ao —-
Co (l - Co) (t) T Eo ap l *Qo aq PCo dt

L/ (1! t) = Uy (P: 0) =U (‘I, 0) = 09 Uy (O’ t) = U (O) t) = “‘Tmlp‘(t)i
v (1, =T (@), 1==Cat, 7y = (I — &)as.

We seek the solutions of the first two equations of the system (10) in the form u, =
Ui + u;2 and vy = vy3 + Viz + Vi3, where u;; and v,, are the solutions of the inhomogeneous
equations of heat conduction for u; and v, with zero initial and boundary data, while u,.,
Vi2, and v,3 are the solutions of homogeneous equations with the corresponding inhomogeneous
boundary conditions. These solutions are written using the Green's function for the first
boundary problem in the segment (0; 1) [3-4]: ~
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Calculating the derivative du,,/dp by termwise differentiation of the integrand and using
the definition of the Jacobi elliptic theta function 05 [51,
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we obtain
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We obtain the expression 9v;;/9q similarly:
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The solution of the homogeneous equation foi u;(p, t) with the boundary conditions
u; (0, t) = —Tpu(t) and u,(1, t) = 0 and a zero initial condition has the form
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Integrating the series in (15) by parts and calculating the derivative with respect to p,
we obtain
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The expression 9vi2(q, t)/9q looks completely similar:
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Integrating the series in (18) by parts and calculating the derivative with respect to g,
we obtain
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Substituting the values of the derivatives 3u;(Q, t)/3p and 3v,(0, t)/dq into the third
equation of the system (10) and using Eq. (9), we obtain an integral equation for the ve-
locity of motion du/dt of the interface: A
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Here
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C: and C; are the heat capacities of phases 1 and 2, respectively. We will investigate the
Volterra integral equation (20) with the help of a Laplace transformation, Changing to the
transforms, and considering that [6]
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where M(s) and x(s) are the Laplace transforms of the functions u(t) and T(t). Let us in-
vestigate the principal asymptotic forms of the solution. At "small" times (t << min (7o,
t1)) the behavior of u(t) is determined by the asymptotic form M(s) at large s [6], At
large s

Ms) = 240 (— Vsa()
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By inverting (23) we obtain an expression describing the motion of the boundary at times
t << min (to, T1):
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The quantity o equals (T2 + Ts)/T., and for the case of T, << 1o/a? we can obtain a compar-
atively simple quadrature for the coordinate of the boundary, using an asymptotic expansion
of the function erfc (z) at large =z:
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The motion of the boundary at large times (t >> max (1o, T:)) is determined by the residues
of the function M(s)etS at the poles closest to the origin of coordinates. Let us consider
the case when x(s) = T/s is the transform of the step function T(t) = TH(t), A residue of
zero gives a constant

AT
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By analyzing the denominator of Eq. (22) we can ascertain that the next poles lie on the
negative s semiaxis and their location is found from the solution of the transcendental
equation

Tyctgb -+ Tyctgh %’:-1-7‘&‘/:-‘::0, b=—iVst,. (26)
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We represent u(t) in the series form
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At times t 2 To we can retain only the first term of the series (27)., Then we obtain the
following equation describing the emergence of the phase boundary at the new steady position;
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Knowing the law of motion of the boundary, we can determine the temperature distribu-
tions in each of the phases, We apply a Laplace transformation to Eqs. (13) and (16):
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Integrating over p, at large s we obtain
U, 9 2 (Tm—To) M() p -+ (T — To— Tms) M(s)exp[—pV stl.. (31)
From this we get the temperature distribution in the layer 0 < z < r(t) at small t;
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Similarly, applying a Laplace transformation to Egqs. (14), (17), and (19) and integrating
over q, at large s we obtain
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2
From this we find the temperature distribution in the layer r{(t) < z < I at small t:
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In conclusion, we note that in the general case the numerical solutions of the integral equa-
tion (20) can easily be obtained by the method of successive approximations,
NOTATION

. u(z, t) and v(z, t), temperature dlstrlbutlons in regions of phases 1 and 2, respective-
ly; z(t), coordinate of movingphase boundary; ai,‘n , and C, T thermal diffusivity, thermal

conductivity, and heat capacity of i-th phase (i1=1, 2); A, 1atent heat of tranmnsition; g,

small parameter; to = £&/ai and 1, = (I — go)>/a3, characteristic times of heating; s, com-
plex variable in Laplace transformation,
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